The Gly-952 Residue of Saccharomyces cerevisiae DNA Polymerase α Is Important in Discriminating Correct Deoxyribonucleotides from Incorrect Ones
نویسندگان
چکیده
منابع مشابه
Correct and incorrect nucleotide incorporation pathways in DNA polymerase beta.
Tracking the structural and energetic changes in the pathways of DNA replication and repair is central to the understanding of these important processes. Here we report favorable mechanisms of the polymerase-catalyzed phosphoryl transfer reactions corresponding to correct and incorrect nucleotide incorporations in the DNA by using a novel protocol involving energy minimizations, dynamics simula...
متن کاملDNA polymerase 4 of Saccharomyces cerevisiae is important for accurate repair of methyl-methanesulfonate-induced DNA damage.
The DNA polymerase 4 protein (Pol4) of Saccharomyces cerevisiae is a member of the X family of DNA polymerases whose closest human relative appears to be DNA polymerase lambda. Results from previous genetic studies conflict over the role of Pol4 in vivo. Here we show that deletion of Pol4 in a diploid strain of the SK1 genetic background results in sensitivity to methyl methanesulfonate (MMS). ...
متن کاملCisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae
Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...
متن کاملThe DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant.
A cell's ability to tolerate DNA damage is directly connected to the human development of diseases and cancer. To better understand the processes underlying mutagenesis, we studied the cell's reliance on the potentially error-prone translesion synthesis (TLS), and an error-free, template-switching pathway in Saccharomyces cerevisiae. The primary proteins mediating S. cerevisiae TLS are three DN...
متن کاملGly-103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 protein is critical for DNA binding.
Rad51 is a homolog of the bacterial RecA protein and is central for recombination in eukaryotes performing homology search and DNA strand exchange. Rad51 and RecA share a core ATPase domain that is structurally similar to the ATPase domains of helicases and the F1 ATPase. Rad51 has an additional N-terminal domain, whereas RecA protein has an additional C-terminal domain. Here we show that glyci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2003
ISSN: 0021-9258
DOI: 10.1074/jbc.m208604200